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Abstract
The limitation on the size of quantum computers makes it important to reuse
qubits for auxiliary registers even though they are entangled with others and are
occupied by other computational processes. We construct a quantum algorithm
that performs the functional phase rotation, which is the generalized form of
the conventional conditional phase transforms, using the functional evaluation
oracle. The constructed algorithm works without any a priori knowledge of
the state of an auxiliary register at the beginning and it recovers the initial state
of an auxiliary register at the end. This provides ample scope to choose qubits
for auxiliary registers at will.

PACS numbers: 03.67.Lx, 03.65.Ta

1. Introduction

One of the most powerful features of quantum computation is quantum parallelism. The
superposition principle of quantum mechanics makes it feasible to prepare a quantum register
in a coherent superposition of all possible inputs. Through a query to a quantum oracle
evaluating a given function, we can encode the information on the function into the basis
states or the phases. It may well be possible to distill from this state a certain global property
of the function, thus exploiting quantum parallelism. For a given function f there are two
ways to encode the information on f into qubits. One way is to use a functional evaluation
oracle computing |x, y〉 �→ |x, y + f (x)〉, in which the information on f is encoded into the
basis states. The first quantum register (the control register) contains input states which we
wish to interfere, and the second quantum register (the auxiliary register) is usually used to
draw relative phase changes in the first register. The other way is to make use of the functional
phase rotation |x〉 �→ eiθf (x)|x〉 for an arbitrary real constant θ , in which the information on f

is encoded into the phases. On occasions, the functional evaluation oracle is merely used to
induce the effect of the functional phase rotation on the control register. In this case, we can
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adopt the functional phase-rotation oracle instead of the functional evaluation oracle and we
can avoid the necessity of an auxiliary register.

Deutsch and Jozsa [1, 2] have presented a simple promise problem to determine whether
a Boolean function f : ZN → Z2 is either constant or balanced. They have shown that this
can be solved efficiently without error on a quantum computer while it requires an exhaustive
search to solve deterministically without error in a classical setting. In subsequent work,
Cleve et al [3] have generalized their algorithm to distinguish between constant and evenly-
balanced functions. The key of these algorithms is the π-rotation of phases controlled by the
query result of the functional evaluation oracle computing |x, y〉 �→ |x, y +f (x)〉. The refined
Deutsch–Jozsa algorithm [4], which is the description of the original Deutsch–Jozsa algorithm
by an oracle of the form |x〉 �→ (−1)f (x)|x〉, removed the necessity of the auxiliary register.
Recently, Chi et al [5] generalized these algorithms to distinguish between constant and
evenly-distributed functions by exploiting summations of the roots of unity. They employed
an oracle computing |x〉 �→ e2π if (x)/M |x〉 for a given function f : ZN → ZM . Grover has
constructed a quantum algorithm that can find a particular item in expected time O(

√
N)

when an unstructured list of N items is given [6–8]. This algorithm relies on the conditional
phase transform |x〉 �→ (−1)f (x)|x〉 where f is the Boolean function computed by an oracle.
Chi and Kim [9] have generalized this search algorithm and have shown that a quantum
computer can search a database by a single query when the number of solutions is equal to,
or more than, a quarter. Their algorithm makes use of the conditional γ -phase transform
|x〉 �→ eiγf (x)|x〉 where γ is a real constant. By combining the ZQP algorithm of Simon [10]
and Grover’s quantum search algorithm, Brassard and Høyer [11] have shown that Simon’s
problem can be solved on a quantum computer in worst-case polynomial time; thus, it is in the
QP class.

For a function f : ZN → ZM the conditional phase transform can be generalized to
the functional phase rotation Rξ,f : |x〉 �→ ωξf (x)|x〉, where ω = e2π i/M is a primitive Mth
root of unity and ξ is an arbitrary constant in ZM . In this paper, we construct a quantum
algorithm that implements the functional phase rotation Rξ,f using the functional evaluation
operator Uf : |x, y〉 �→ |x, y + f (x)〉. While most quantum algorithms employing the
functional evaluation operator require the initialization of an auxiliary register to start with,
our algorithm requires no initialization of an auxiliary register.

There have been a few results on the initialization problem in quantum computation. Biron
et al [12, 13] have found that Grover’s search algorithm [6] is robust against modest noise in
the amplitude initialization procedure. Also, Carlini and Hosoya [14] have obtained a similar
result for the generalized search algorithm constructed by Chi and Kim [9] and for the counting
algorithm presented by Brassard et al [15]. In [16] it has been shown that one pure qubit and a
supply of maximally mixed qubits are sufficient to implement efficiently the quantum factoring
algorithm of Shor [17] by the conjunction of the phase estimation technique [18] (see also [3])
and the semiclassical Fourier transform [19]. Recently, Chi et al [5] constructed a quantum
algorithm that can distinguish between constant and evenly-balanced functions without the
initialization of an auxiliary register.

If quantum algorithms can avoid initializing auxiliary registers at the beginning and
moreover preserve the initial states of auxiliary registers at the end, we can reuse qubits for
auxiliary registers even though they are entangled with others and are occupied by other
computational processes. We do this by constructing a quantum algorithm that performs
the functional phase rotation and retrieves the initial state of the auxiliary register after its
application. Hence the auxiliary register in the constructed algorithm can consist of any qubits
collected from any other registers. We also demonstrate that to realize the initialization-free
functional phase rotation at least two operations dependent on the given function are necessary.
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Thus, the presented algorithm is optimal in that it involves only two functional evaluations.
Of course, if any kind of initialization is involved, a single functional evaluation is sufficient.

The rest of this paper is organized as follows. In section 2 we investigate the initialization-
free functional phase rotation restricted on an auxiliary register and we construct a quantum
algorithm for this localized operation. This facilitates the construction of the initialization-
free functional phase rotation from the functional evaluation operator, which is presented in
section 3. Finally, we draw a conclusion in section 4.

2. Localized operation

In order for an algorithm performing the functional phase rotation to leave the auxiliary
register intact, the overall procedure should operate on an auxiliary register as the identity
operator. In this section, we look at the phase changes in the control register resulting from the
initialization-free functional phase rotation as those in the auxiliary register and we investigate
their effect on the auxiliary register. We restrict the initialization-free functional phase rotation
on the auxiliary register and then, localizing the functional evaluation operator on the auxiliary
register, we construct a quantum algorithm that performs the localized initialization-free
functional phase rotation.

Let f : ZN → ZM be given. The unitary operation, which realizes the functional
phase rotation Rξ,f : |x〉 �→ ωξf (x)|x〉 on the control register and leaves the auxiliary register
untouched, can be written as Rξ,f ⊗ I : |x, y〉 �→ ωξf (x)|x, y〉 where ξ is an arbitrary constant
in ZM and ω = e2π i/M is a primitive Mth root of unity. The phase changes in the control register
caused by Rξ,f can be considered as the phase changes in the auxiliary register dependent
on the states of the control register. If we define a unitary operator Jξ,z : |y〉 �→ ωξz|y〉 for
y ∈ ZM , then we can rewrite Rξ,f ⊗ I as

Rξ,f ⊗ I :
∑
x,y

αxy |x〉 ⊗ |y〉 �→
∑
x,y

αxy |x〉 ⊗ Jξ,f (x)|y〉. (1)

Though Jξ,z alone gives rise to global phase change, which has no effect on quantum states,
since the global phase changes on the auxiliary register are controlled by the basis states of
the control register as seen in (1), we can obtain the required relative phase changes. We note
that Jξ,z has one eigenvalue ωξz and the corresponding eigenspace is the whole Hilbert space.
Similarly, we can restrict the functional evaluation operator Uf : |x, y〉 �→ |x, y + f (x)〉 on
the auxiliary register and this localization induces a translation Tz : |y〉 �→ |y + z〉 where
z = f (x) is dependent on the state of the control register. Hence, we can describe Uf in terms
of the translation operator on the auxiliary register as follows

Uf :
∑
x,y

αxy |x〉 ⊗ |y〉 �→
∑
x,y

αxy |x〉 ⊗ Tf (x)|y〉. (2)

Due to the expressions (1) and (2) the construction of Jξ,z from Tz implies that of Rξ,f from
Uf and we can concentrate on the local operations on the auxiliary register.

In particular, when f is the identity map I , we denote Rξ,f by Rξ . In this case, the
functional phase rotation Rξ : |y〉 �→ ωξy|y〉 can easily be implemented by QFT†T †

ξ QFT
where QFT represents the quantum Fourier transform. This quantum circuit is depicted in
figure 1. Without loss of generality, we may assume that N and M are powers of two, i.e.
N = 2n and M = 2m for some non-negative integers n and m. We remark that, for general
positive integers N and M, the approximate Fourier transform in [18] can be used.

Using Rξ we can construct a quantum algorithm to implement Jξ,z with two T±z. To
begin with, we prepare a quantum register and denote its state by |�〉 = ∑M−1

y=0 αy |y〉.
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Rξ |Φ〉




|Φ〉 ...
QFT T †

ξ QFT†
...

Figure 1. Quantum circuit to implement Rξ : |y〉 �→ ωξy |y〉.




Sξ |Φ〉




|Φ〉 ...
QFT T †

ξ QFT ...

Figure 2. Quantum circuit to implement Sξ : |y〉 �→ ωξy |−y〉.

Without initializing the register we proceed with the following algorithm: (i) apply Tz; (ii)
apply Rξ = QFT†T †

ξ QFT; (iii) apply T
†
z = T−z; (iv) apply R

†
ξ = QFT†Tξ QFT. Then the state

of the register evolves as follows

|�〉 Tz−→
M−1∑
y=0

αy |y + z〉

Rξ−→
M−1∑
y=0

ωξ(y+z)αy |y + z〉

T
†
z−→

M−1∑
y=0

ωξ(y+z)αy |y〉

R
†
ξ−→ ωξz|�〉.

(3)

Thus we have R
†
ξ T

†
z RξTz|�〉 = ωξz|�〉 and hence we attain

Jξ,z ≡ ωξzI = R
†
ξ T

†
z RξTz. (4)

The algorithm implementing Jξ,z is not unique. All cyclic permutations of the steps in
the above algorithm give an identical effect. For example, we may start at step (ii), perform
successive steps, and end at step (i). In fact, if we use the notation [A,B] = ABA−1B−1 for
invertible operators A and B, then from equation (4) we can deduce

Jξ,z = [R†
ξ , T

†
z ] = [Tz, R

†
ξ ] = [Rξ, Tz] = [T †

z , Rξ ] (5)

with its inverse J−ξ,z = [Rξ, T
†
z ] = [Tz, Rξ,I ] = [R†

ξ , Tz] = [T †
z , R

†
ξ ]. Moreover, instead of

Rξ we can use a unitary operator Sξ : |y〉 �→ ωξy |−y〉. Indeed, we can easily check the
relation

Jξ,z = SξTzSξTz. (6)

We remark that S
†
ξ = Sξ . The quantum circuit implementing Sξ by QFTT

†
ξ QFT is shown

in figure 2.
Even though there are many ways to implement Jξ,z, as shown in equations (5) and (6),

the number of T±z involved in each implementation is equal to two and cannot be reduced.
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To see this, we suppose that there is a quantum algorithm implementing Jξ,z and that the
only way to encode the information on z is through T±z. Then the dependence on z requires
at least one T±z at a certain step. Hence, the overall unitary operation performed by the
algorithm can be written by V2T±zV1 = ωξzI for some unitary operators V1 and V2. Since
V1V2 = ωξzT

†
±z, V1V2 depends on z. Thus, in another step, the information on z should be

used once more and so the overall procedure demands at least two translations by ±z. This
observation is crucial in showing that at least two queries to the functional evaluation oracle
are necessary for any initialization-free algorithms performing the functional phase rotation.
This is discussed in the next section.

3. Functional phase rotation

The algorithm for the localized initialization-free functional phase rotation derived in the
previous section is extended in this section. We construct an initialization-free quantum
algorithm that implements the functional phase rotation using two evaluations of a given
function such that the initial state of an auxiliary register remains as it is.

Owing to the relations (1) and (2), the algorithms (5) and (6) for the localized operator Jξ,z

on the auxiliary register suggest quantum algorithms that perform the functional phase rotation
and preserve the initial state of the auxiliary register. We describe the extension of (4). First
of all, we prepare two quantum registers and let |�〉 = ∑N−1

x=0 αx |x〉 and |�〉 = ∑M−1
y=0 βy|y〉

be the respective states of the control and the auxiliary registers. Here the state of the
auxiliary register is temporarily assumed to be pure and no initialization is required during the
preparation of the registers. We proceed with the following algorithm: (i) apply Uf ; (ii) apply
I ⊗ Rξ ; (iii) apply U

†
f = U−f ; (iv) apply I ⊗ R

†
ξ = I ⊗ R−ξ . This procedure makes the state

of the registers evolve as follows

|�〉 ⊗ |�〉 Uf−→
N−1∑
x=0

M−1∑
y=0

αxβy |x〉 ⊗ |y + f (x)〉

I⊗Rξ−→
N−1∑
x=0

M−1∑
y=0

αxβyω
ξ(y+f (x))|x〉 ⊗ |y + f (x)〉

U
†
f−→

N−1∑
x=0

M−1∑
y=0

αxβyω
ξ(y+f (x))|x〉 ⊗ |y〉

I⊗R
†
ξ−→
(

N−1∑
x=0

ωξf (x)αx |x〉
)

⊗ |�〉.

(7)

Discarding the auxiliary register at the final stage we obtain the functional phase rotation
Rξ,f : |x〉 �→ ωξf (x)|x〉. The quantum circuit for the algorithm (7) is depicted in figure 3. The
other extensions of equations (5) and (6) are analogous. For instance, the quantum circuit for
Rξ,f developed from equation (6) is shown in figure 4.

In the procedure (7) we have assumed that the auxiliary register is in a pure state. However,
this is not an essential requirement. In fact, any mixed state is allowed. To be more precise,
we let A be the quantum system of the auxiliary register and we describe its state by the
density operator ρA. Then a reference system R exists such that the compound system AR
is in a pure entangled state |�AR〉 that gives rise to the given reduced state ρA = TrR(ρAR),
where ρAR = |�AR〉〈�AR| is the purification of ρA. Using the Schmidt decomposition, we
can rewrite |�AR〉 as

∑M−1
y=0 αy |y〉A ⊗ |�y〉R. We remark that the states |�y〉R may not form
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Rξ,f |Φ〉


ρA


|Φ〉


ρA

...

...

Uf

...

Rξ

U †
f

...

...
R†

ξ

Figure 3. Quantum circuit for the initialization-free functional phase rotation in (7): the state of
the auxiliary register is described by a density operator ρA.


Rξ,f |Φ〉


ρA


|Φ〉


ρA

...

...

Uf

...

Sξ

Uf

...

...
Sξ

Figure 4. Quantum circuit for the initialization-free functional phase rotation extended from
equation (6): the state of the auxiliary register is described by a density operator ρA.

the standard basis for the subsystem R but just an orthonormal basis, while the states |y〉A

form the standard basis for the subsystem A. Now applying the algorithm (7) to |�〉 ⊗ |�AR〉
we can see that the final state becomes (Rξ,f |�〉) ⊗ |�AR〉. Therefore, the algorithm (7) still
works even when the state of the auxiliary register is mixed. This implies that we can compose
the auxiliary register of any qubits which are collected out of any other registers, even though
they are still occupied by other computational processes and possibly entangled with other
qubits. The algorithm (7) recovers the initial state of the joint system AR after extracting the
desired relative phase changes. Thus, the qubits in the temporarily composed register can be
restored to their positions to continue the suspended computation.

The algorithm (7) requires two functional evaluations, i.e., Uf and U
†
f (two Uf for

the extension of (6)). This is because it excludes initialization. From equation (2) it is
clear that Uf causes translations in the auxiliary register, and from the argument at the end
of section 2 we know that any quantum algorithm for Jξ,z needs at least two translations.
Hence, any quantum algorithm that implements the functional phase rotation and leaves the
auxiliary register untouched requires at least two evaluations of a given function. On the other
hand, if the auxiliary register is initializable only one functional evaluation is sufficient. In
fact, since QFT|−ξ〉 is an eigenvector of Tz and the associated eigenvalue is ωξz, if we let
|�〉 = QFT T−ξ |0〉 then Uf maps |x〉⊗|�〉 to ωξf (x)|x〉⊗|�〉. The special case for ξ = 1 has
been studied in [3, 20]. If the bipartite system AR is separable, that is, the quantum mutual
entropy S(A : R) equals zero, and ρA is known, then a certain frame change on the subsystem
A has an effect on the initialization of the auxiliary register and we can make the auxiliary
register regain its early state after performing the functional phase rotation.

For a more general function f : ZN → [0, 1) ⊂ R, the value f (x) can be approximated
by its m-bit binary expansion (0.a1a2 . . . am)2 = ∑m

i=1 ai2−i for ai ∈ Z2. We define the
m-bit approximation f̃ : ZN → ZM of f by f̃ (x) = ∑m

i=1 ai2m−i where M = 2m [3, 20].
Then, Rξ,f̃ approximates the operation |x〉 �→ e2π iξf (x)|x〉. This approximate functional
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phase rotation can be applied to the construction of the conditional γ -phase transform in the
generalized quantum search algorithm [9].

4. Conclusions

We have considered a general form of the conventional conditional phase transforms, which we
call the functional phase rotation. From the functional evaluation oracle, we have constructed
a quantum oracle that performs the functional phase rotation and does not require any kind of
initialization of the auxiliary register involved in the functional evaluation. This implies that,
when the functional evaluation oracle is used simply to induce the functional phase rotation,
there is no need to initialize the auxiliary register. The presented algorithm can also recover
the initial state of the auxiliary register, which makes it possible to compose an auxiliary
register of any qubits even though they are entangled with others and occupied by other
computational processes. While a single call of the functional evaluation oracle is sufficient
to realize the functional phase rotation when initialization is involved, the initialization-free
algorithm queries the functional evaluation oracle twice.
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